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BACKGROUND: Chronic exposure to inorganic arsenic from drinking water has been associated with a host of cancer and noncancer diseases. The
application of metabolomics in epidemiologic studies may allow researchers to identify biomarkers associated with arsenic exposure and its health
effects.

OBJECTIVE: Our goal was to evaluate the long-term reproducibility of urinary metabolites and associations between reproducible metabolites and ar-
senic exposure.

METHODS: We studied samples and data from 112 nonsmoking participants (58 men and 54 women) who were free of any major chronic diseases
and who were enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS), a large prospective cohort study in Bangladesh. Using a global
gas chromatography–mass spectrometry platform, we measured metabolites in their urine samples, which were collected at baseline and again 2 y
apart, and estimated intraclass correlation coefficients (ICCs). Linear regression was used to assess the association between arsenic exposure at base-
line and metabolite levels in baseline urine samples.

RESULTS: We identified 2,519 molecular features that were present in all 224 urine samples from the 112 participants, of which 301 had an ICC of
≥0:60. Of the 301 molecular features, water arsenic was significantly related to 31 molecular features and urinary arsenic was significantly related to
74 molecular features after adjusting for multiple comparisons. Six metabolites with a confirmed identity were identified from the 82 molecular fea-
tures that were significantly associated with either water arsenic or urinary arsenic after adjustment for multiple comparisons.

CONCLUSIONS: Our study identified urinary metabolites with long-term reproducibility that were associated with arsenic exposure. The data estab-
lished the feasibility of using metabolomics in future larger studies. https://doi.org/10.1289/EHP1992

Introduction
Inorganic arsenic (iAs) occurs naturally in groundwater in many
parts of the world, affecting millions of people worldwide.
Chronic exposure to iAs from drinking water has been associated
with a host of human diseases, including cancer and cardiovascu-
lar disease (CVD) (Chen et al. 2009). Metabolomics, or metabolite
profiling, refers to the systematic analysis of low molecular weight
metabolites (the entire set of metabolites constitute the metabo-
lome) in a biological sample that are intermediates or endpoints of
metabolism (Wang et al. 2011). Downstream of genomic, tran-
scriptomic, and proteomic perturbations, metabolites represent the
most proximal reporters of alterations in the body in response to
external stimuli (Lindon et al. 2003). Metabolomics has the poten-
tial to help identify the causes of environmentally mediated
disease. Emerging evidence indicates metabolic perturbations
associated with exposure to environmental contaminants, includ-
ing welding fumes (Wang et al. 2012), cadmium (Ellis et al. 2012;

Gao et al. 2014; Xu et al. 2016), tobacco smoking (Ellis et al.
2012; Hsu et al. 2013), phthalate (Xu et al. 2016), pesticides
(Bonvallot et al. 2013), and arsenic (Li et al. 2017; Martin et al.
2015; Zhang et al. 2014). Epidemiologic studies of arsenic expo-
sure from drinking water and metabolomics are limited. A recent
study of 246 pregnant Chinese women identified 9 urinary metab-
olites that could be used to classify the women into different ar-
senic exposure levels (Li et al. 2017). Another study in diabetes
cases and controls from México found associations between ar-
senic exposure from drinking water and relative amounts of 61
metabolites in urine (Martin et al. 2015). However, additional
population-based studies are needed.

In epidemiologic studies, the usual level of a biomarker is of
key interest and most likely to be associated with disease risk or
exposure. However, a single measurement in time may not be
representative of the usual level, thus reducing the power for epi-
demiologic studies to detect associations with disease (Rosner
et al. 1992). Therefore, it is critical to evaluate the long-term
reproducibility of new biomarkers before including them in large
epidemiologic studies. Temporal reproducibility refers to the con-
sistency of measurements of more than one sample from the
same person at different times (Willett and Lenart 1998) and is
expressed by the intraclass correlation coefficient (ICC) as the ra-
tio of between-subject variation to total variation (sum of within-
and between-subject variation). The closer the ICC is to 1,
indicating little within-subject variation relative to the between-
subject variation, the better a single measurement of a biomarker
is at differentiating the relative ordering of the level among the
individuals (Willett and Lenart 1998). Metabolites in serum and
plasma were reported to have, on average, moderate reproducibil-
ity (ICC median value 0.4–0.5 covering several months to a year
(Floegel et al. 2011; Sampson et al. 2013; Townsend et al. 2013).
Urine is easy to collect with a large volume and it is largely free
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from interfering proteins or lipids, presenting opportunities for
biomarker discovery in epidemiologic studies. However, the
long-term reproducibility of urinary metabolites has yet to be
evaluated.

We have established the Health Effects of Arsenic
Longitudinal Study (HEALS), a well characterized cohort in
Bangladesh with >20,000 participants recruited since year
2000. With repeated measures of urinary arsenic at baseline and
every follow-up for more than 95% of the participants, we have
the unique opportunity to evaluate the long-term reproducibility
of urinary metabolites. We conducted a study of urinary metab-
olite profiling in 124 HEALS participants with iAs exposure at
low-to-moderate levels (0:1 to<300 lg=L). We measured the
metabolites in their urine samples collected 2 y apart using a
global gas chromatography–mass spectrometry (GC-MS) plat-
form and evaluated long-term reproducibility. We also exam-
ined the associations of both water arsenic and urinary arsenic
at baseline with metabolites with sufficient reproducibility. In
a subset of 84 participants for whom urinary arsenic metabo-
lites had been measured, we also assessed the relationship
between monomethylarsonic acid (MMA) percentage, an indi-
cator of arsenic methylation capacity, and these reproducible
metabolites.

Methods

Subject Selection
The parent study, the HEALS, is an ongoing prospective cohort
study designed to investigate the health effects of arsenic expo-
sure from drinking water in Araihazar, Bangladesh. Details of the
HEALS have been described previously (Ahsan et al. 2006).
Briefly, between October 2000 and May 2002, we recruited
11,746 married adults (original cohort) 18–75 y of age who were
primarily drinking water from a local tube well, from a well-
defined 25-km2 geographical area. During 2006–2008, the cohort
was expanded to include an additional 8,287 participants (expan-
sion cohort) following the same methodologies. The overall par-
ticipation rate was 97%. At baseline, water samples from all
10,971 tube wells in the study area were collected, and trained
clinicians collected demographic and lifestyle data using a stand-
ardized questionnaire and collected spot urine samples from par-
ticipants using structured protocols. The cohort is being actively
followed up biennially with similar in-person visits (Ahsan et al.
2006). Spot urine samples were collected at follow-up visits.
Informed consent was obtained from the study participants, and
the study procedures were approved by the ethical committee of
the Bangladesh Medical Research Council and the institutional
review boards of Columbia University and the University of
Chicago.

All participants in the present study used the tube wells as
their exclusive source of drinking water for a long period of time
before baseline (on average 7.8 y prior to baseline), and they did
not switch wells during the follow-up. Also, analyses of time-
series samples collected from 20 tube wells monitored for 3 y in
the study area showed that the arsenic concentration in well water
was relatively stable over time (Cheng et al. 2005). Therefore,
baseline water arsenic is an indicator for long-term exposure in
our study population. We aimed to include a homogeneous sub-
population with a wide range of iAs exposure in this study; there-
fore, we excluded smokers and those with any major chronic
diseases such as cancer, CVD, and diabetes from overall HEALS
participants. Then we randomly selected a total of 124 partici-
pants, consisting of 62 male and 62 female nonsmokers 25–45 y
of age. We also frequency matched them by sex, age ( ± 5 y),

water arsenic levels ( ± 10 lg=L), and cohort memberships (orig-
inal vs. expansion cohort).

Arsenic Measurement
Details of the methods have been described (Chen et al. 2013).
Briefly, total water arsenic concentration was analyzed by high-
resolution inductively coupled plasma mass spectrometry with a
detection limit of <0:2 lg=L. Total urinary arsenic concentration
was measured by graphite furnace atomic absorption, using a
Perkin-Elmer Analyst 600 graphite furnace system (Waltham,
MA, USA) with a detection limit of 2 lg=L (Nixon et al. 1991).
Urinary creatinine was analyzed using a method based on the
Jaffe reaction (Slot 1965). In a subset of 84 HEALS participants,
urinary arsenic metabolites were measured by high-performance
liquid chromatography (HPLC) separation of arsenobetaine
(AsB), arsenocholine (AsC), AsV, AsIII, MMA, and dimethylar-
sinic acid (DMA), followed by detection by inductively coupled
plasma mass spectrometry (Reuter et al. 2003). The percentage of
MMA was calculated by dividing MMA by the sum of the metab-
olites as total arsenic after subtracting AsB and AsC (i.e., non-
toxic organic As from dietary sources). Based on our data,
urinary MMA% does not change much over time, with an ICC of
0.85 (Ahsan et al. 2007).

Metabolite Measurement Using GC-MS
Urinary metabolites were measured as described previously (Gao
et al. 2017). Cold methanol (80 lL) was added to 20 lL urine.
After vortexing at maximum speed for 1 min, the samples were
incubated at 4°C for 20 min and then centrifuged for 10 min at
12,000 rpm. The supernatant was collected and dried in a
SpeedVac (Savant SC110A; Thermo Electron), followed by deri-
vatization using methoxyamine-HCL and BSTFA. The derivat-
ized samples were analyzed using an Agilent Technologies
6890N Network GC System/5,973 Mass-Selective Detector
(Agilent Technologies) with an Agilent J&W GC column [30 m
length; 0:250 mm diameter (narrow bore); film thickness
0:25 lm] (Agilent Technologies) under the following conditions:
initial oven temperature was set at 60°C for 2 min, ramped to
320°C by 8°C/min, and then held at 320°C for 10.5 min. Two
microliters of sample solution was injected with helium as the
carrier gas at a flow rate of 0:8 mL=min. The temperature of the
injector, ion source, and MS Quadrupole were set at 275°C,
230°C, and 150°C, respectively. The mass spectrometer was
operated in full scan mode from 50 to 600m=z. The resultant
data were processed with XCMS (https://xcmsonline.scripps.
edu) for peak picking, alignment, and extraction of peak inten-
sities. We used molecular features to refer fragment ions
obtained by mass spectrometry (Alonso et al. 2015; Lu et al.
2014; Smith et al. 2006) that included both the ions that were
assigned to specific metabolites and those with unknown identi-
ties. Normalization was performed by dividing the peak area of
each molecular feature by the sum of peak areas of all molecular
features. The molecular features with an ICC of ≥0:60 were
selected for metabolite identification by comparing both the MS
spectra and retention time with those in the National Institute of
Standards and Technology (NIST) Standard Reference Database.

Statistical Analyses
We used PROC VARCOMP and PROC GLM in SAS (version
9.3; SAS Institute Inc.) to estimate the ICCs and their 95% confi-
dence intervals, respectively, for the normalized peak intensity of
each molecular feature detected in the two yearly urine samples.
The molecular features with an ICC of ≥0:60 were selected for
further statistical analyses. We used linear regression models to
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estimate the associations of continuous measure of water arsenic,
urinary arsenic, and urinary MMA% with each molecular feature
adjusting for sex, age, and cohort memberships. Assumptions of
linear regression such as normal distribution of residuals, homo-
cedasticity, and colinearity were checked and none was violated.
The results with additional adjustment for body mass index
(BMI) were similar and are therefore not shown. The threshold
for the significance of the association was adjusted for multiple
testing by controlling the false-discovery rate (FDR) (Benjamini
and Hochberg 1995). A Venn diagram was used to illustrate the
overlap of the metabolites that had a significant association with
water arsenic, urinary arsenic, or urinary MMA%. For the repro-
ducible metabolites that were nominally significantly associated
with water arsenic or urinary arsenic, we included a heatmap to
present multivariable Pearson correlations between these metabo-
lites and arsenic measures with adjustment for sex, age, and
cohort memberships, using the heatmap.2 function from the
gplots package in R (version 3.4.0; R Core Team). In addition,
we computed least squares means of urinary levels of the metabo-
lite L-threonine that was significantly associated with both water
arsenic and urinary arsenic after adjustment for multiple compari-
sons by quartiles of baseline water arsenic and urinary arsenic
levels adjusting for sex, age, and cohort memberships.

Results

Characteristics of the Selected Subjects
A total of 12 participants were excluded from the analysis
because metabolites were undetectable in both or one of their two
yearly urine samples and the ICC could not be calculated. The
present study consisted of 58 (51.8%) men and 54 (48.2%)
women who were thin with a mean BMI of 20:5 kg=m2, low-
educated, and exposed to a mean level of <50 lg=L water arsenic
at baseline (Table 1). Men and women did not differ appreciably

regarding the matching factors of age, cohort memberships, and
baseline total water arsenic as well as other variables such as
BMI, systolic blood pressure, diastolic blood pressure, baseline
total urinary arsenic and total urinary arsenic at the first follow-up
2 y later; however, men had significantly more years of formal
education than women (p<0:01). Participants in the original
cohort had significantly lower systolic and diastolic blood
pressure compared with participants in the expansion cohort
(p<0:01), but they did not differ by other variables such as age,
BMI, baseline total water arsenic, baseline total urinary arsenic,
and total urinary arsenic at the first follow-up (Table 2).

ICCs of the Molecular Features and Their Associations with
Water Arsenic, Urinary Arsenic, and Urinary MMA%
We identified 2,519 molecular features that were present in all
224 urine samples from the 112 participants. The ICCs of these
molecular features are shown in Excel Table S1. Of these molec-
ular features, 688 (27%) had an ICC of ≥0:50 and 301 (12%) of
≥0:60. We then explored the associations of the 301 molecular
features with an ICC of ≥0:60 with water arsenic, urinary ar-
senic, and urinary MMA% at baseline. Water arsenic was nomi-
nally significantly related to 89 features and 31 (34.8%) had an
FDR p<0:05; 126 features were nominally significantly associ-
ated with urinary arsenic and 74 (58.7%) had an FDR p<0:05
(Figure 1A). A total of 142 features were significantly associated
with either water arsenic or urinary arsenic at the nominal level;
most of these features were correlated with water arsenic and uri-
nary arsenic similarly (Figure 1B, see also Excel Table S2); the
ICCs of these molecular features were similar by high and low
levels of exposure (see Excel Table S3). Analyses based on log-
transformation of the metabolites generated similar results (see
Excel Table S4). Of the 142 features, 82 remained significant af-
ter adjustment for multiple comparisons (Figure 1A). The ICCs
of these 82 features ranged from 0.60 to 0.83, with 26 features
(31.7%) having an ICC of >0:70. Of the 82 features, 23 were
related to both water arsenic and urinary arsenic in a consistent
direction (Figure 1A). In addition, a total of 33 molecular features
were nominally significantly associated with urinary MMA%,
though none of the associations remained significant after adjust-
ment for multiple comparisons (Figure 1A, see also Excel Table
S5), probably because of the small sample size (n=84). Most of
these features (n=29, 87.9%) were also significantly associated
with either water arsenic (n=21, 63.6%) or urinary arsenic
(n=27, 81.8%), and 19 (57.6%) were significantly related to both
water arsenic and urinary arsenic at the nominal level (Figure 1A,
see also Excel Table S5).

Identities of the Reproducible Molecular Features
We also identified the metabolite identities of the 142 molecular
features that had an ICC of ≥0:60 and were significantly associ-
ated with either water arsenic or urinary arsenic at the nominal
level by searching the NIST Standard Reference Database. A

Table 1. Distribution of selected variables by sex.

Variables Men (n=58) Women (n=54) p-Valuea

Age (y) 34:4± 5:7 34:9± 5:5 0.63
Body mass index (kg=m2) 19:9± 2:6 21:1± 4:0 0.07
Education (y) 4:8± 4:0 2:7± 3:4 0.003
Systolic blood pressure
(mmHg)

117:6± 13:1 115:9± 15:7 0.52

Diastolic blood pressure
(mmHg)

74:6± 10:0 77:3± 11:1 0.18

Baseline total water arsenic
(lg=L)

47:2± 51:7 44:8± 51:4 0.81

Baseline total urinary arsenic
(lg=g creatinine)

194:3± 170:1 206:7± 178:2 0.71

Follow-up total urinary
arsenic (lg=g creatinine)

171:3± 131:2 199:6± 162:0 0.31

Cohort [n (%)]
Original 25 (43.1) 25 (46.3) 0.74
Expansion 33 (56.9) 29 (53.7)

ap-Values were computed with the chi-square test or analysis of variance.

Table 2. Distribution of selected variables by cohort.

Variables Original cohort (n=50) Expansion cohort (n=62) p-Valuea

Age (y) 34:3± 5:8 35:0± 5:4 0.50
Body mass index (kg=m2) 19:8± 2:5 21:0± 3:8 0.07
Education (y) 3:8± 4:0 3:9± 3:7 0.92
Systolic blood pressure (mmHg) 112:1± 14:5 120:5± 13:3 0.002
Diastolic blood pressure (mmHg) 73:6± 9:4 77:8± 11:2 0.04
Baseline total water arsenic (lg=L) 55:6± 59:4 38:4± 42:7 0.08
Baseline total urinary arsenic (lg=g creatinine) 222:9± 191:5 182:0± 156:4 0.22
Follow-up total urinary arsenic (lg=g creatinine) 197:6± 162:4 174:8± 133:4 0.42
ap-Values were computed with the chi-square test or analysis of variance.
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total of 16 metabolites had a confirmed identity (Table 3),
namely, aminoethanol, b-amino isobutyric acid, citric acid, 1,2-
dithiane-4,5-diol, ethanedioic acid, glycine, 3-hydroxyisovaleric
acid, indole-3-acetic acid, L-threonine, phosphoric acid, pyroglu-
tamic acid, (R*,S*)-3,4-dihydroxybutanoic acid, serine, succinic

acid, uracil, and uric acid. Furthermore, 6 of the 16 metabolites
(1,2-dithiane-4,5-diol, L-threonine, phosphoric acid, pyroglutamic
acid, (R*,S*)-3,4-dihydroxybutanoic acid, and succinic acid)
were significantly associated with either water arsenic or urinary
arsenic after adjustment for multiple comparisons. The metabolite

Figure 1. Associations of reproducible molecular features with baseline total water arsenic and baseline total urinary arsenic. (A) A Venn diagram shows the
overlap of the metabolites that had a significant association with water arsenic, urinary arsenic, and urinary MMA%. (B) Heatmap of multivariable Pearson cor-
relations of baseline total water arsenic and urinary arsenic with the reproducible metabolites that were nominally significantly associated with water arsenic or
urinary arsenic. The coefficients were adjusted for sex, age, and cohort memberships. Note: MMA%, percent monomethylarsonic acid.

Table 3. Nominally significant associations of reproducible molecular features with baseline total water arsenic and baseline total urinary arsenic.

Metabolite ICC (95% CI)

Water arsenic Urinary arsenic

ba (95% CI)
Raw

p-value
FDR

p-value ba (95% CI)
Raw

p-value
FDR

p-value

Aminoethanol 0.60 (0.46, 0.70) 0.48 (0.06, 0.89) 0.025 0.11 0.50 (0.09, 0.91) 0.018 0.07
b-Amino isobutyric acid 0.68 (0.57, 0.77) −0:02 (−0:05, 0.01) 0.211 0.39 −0:03 (−0:06, −0:00) 0.043 0.11
Citric acid 0.62 (0.49, 0.72) −0:03 (−0:05, 0.00) 0.051 0.17 −0:03 (−0:05, −0:00) 0.048 0.12
1,2-Dithiane-4,5-diol 0.70 (0.59, 0.78) 0.35 (0.09, 0.62) 0.010 0.07 0.58 (0.34, 0.83) <0:001 0.001
Ethanedioic acid 0.67 (0.56, 0.76) −0:00 (−0:01, 0.00) 0.200 0.38 −0:00 (−0:01, −0:00) 0.049 0.12
3-Hydroxyisovaleric acid 0.63 (0.51, 0.73) −0:02 (−0:04, −0:00) 0.022 0.11 −0:02 (−0:04, 0.00) 0.052 0.12
Glycine 0.60 (0.47, 0.71) −0:09 (−0:19, 0.01) 0.072 0.20 −0:11 (−0:20, −0:01) 0.031 0.09
Indole-3-acetic acid 0.61 (0.48, 0.71) −0:04 (−0:09, 0.00) 0.060 0.17 −0:05 (−0:09, −0:00) 0.035 0.10
L-Threonine 0.60 (0.46, 0.70) −0:13 (−0:22, −0:04) 0.006 0.05 −0:15 (−0:24, −0:06) 0.001 0.02
Phosphoric acid 0.67 (0.55, 0.76) 1.05 (0.13, 1.96) 0.025 0.11 1.25 (0.35, 2.15) 0.007 0.04
Pyroglutamic acid 0.64 (0.51, 0.73) −0:47 (−0:93, −0:01) 0.047 0.16 −0:68 (−1:13, −0:23) 0.003 0.03
(R*,S*)-3,4-Dihydroxybutanoic acid 0.61 (0.48, 0.72) −0:09 (−0:16, −0:02) 0.016 0.10 −0:09 (−0:17, −0:02) 0.010 0.04
Serine 0.63 (0.51, 0.73) −0:18 (−0:37, 0.02) 0.070 0.20 −0:21 (−0:40, −0:01) 0.035 0.10
Succinic acid 0.63 (0.50, 0.73) −0:02 (−0:04, −0:01) 0.003 0.04 −0:02 (−0:04, −0:01) <0:001 0.02
Uracil 0.63 (0.50, 0.73) −0:05 (−0:11, 0.01) 0.127 0.28 −0:07 (−0:13, −0:01) 0.031 0.09
Uric acid 0.64 (0.51, 0.73) 2.56 (0.39, 4.74) 0.022 0.11 1.27 (−0:93, 3.47) 0.255 0.35
aCoefficient from linear regression model indicates difference in peak intensity of urinary metabolites in relation to per 1-SD increase in water arsenic (51:3 lg=L) and per 1-SD
increase in urinary arsenic (173:4 lg=g creatinine), adjusting for sex, age, and cohort memberships.
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L-threonine was significantly associated with both water arsenic
and urinary arsenic after adjustment for multiple comparisons
(Table 3). The adjusted means of urinary levels of L-threonine
according to quartiles of baseline water arsenic and urinary ar-
senic levels are shown in Figure 2. Overall, L-threonine levels
were inversely related to water arsenic and urinary arsenic in a
similar pattern and were significantly lower in the highest quartile
compared with the lowest quartile (p<0:05 for water arsenic and
p<0:01 for urinary arsenic).

Discussion
To investigate the suitability of urinary metabolite profiling for
use in searching for biomarkers of arsenic-related health effects,
we conducted a study to evaluate the long-term reproducibility of
the metabolites using repeated urine samples collected 2 y apart.
Our data showed that there are substantial known and unknown
metabolites with sufficient reproducibility and strong associations
with iAs exposure, presenting future opportunities of biomarker
discovery for epidemiologic studies.

We found 301 molecular features (27% of the detected fea-
tures) with excellent reproducibility over time (ICCs≥0:60).
These ICCs compare favorably with the reproducibility over a
several-year period of serum cholesterol (ICC=0:65) (Shekelle
et al. 1981), blood pressure (ICC=0:60–0:64) (Rosner et al.
1977), blood glucose (ICC=0:52) (Gordon and Shurtleff 1973),
pulse (ICC=0:49) (Gordon and Shurtleff 1973), and plasma es-
tradiol in postmenopausal women (ICC=0:68) (Hankinson et al.
1995), all of which are exposures considered to be reasonably
well-measured and reliable predictors of disease in epidemiologic
studies. More than 10% of the 301 molecular features were also
associated with urinary MMA%, a biomarker specific for suscep-
tibility to iAs exposure that has been related to cancers (Chen
et al. 2003; Huang et al. 2008; Steinmaus et al. 2010; Yu et al.
2000). Furthermore, 82 of the 301 molecular features were signif-
icantly associated with either water arsenic or urinary arsenic af-
ter controlling for the influence of sex, age, cohort memberships
and multiple comparisons. Although a limited number of metabo-
lites were identified from these reproducible molecular features,
possibly because of the intrinsic limitation of GC-MS, our results
suggest that within the context of a prospective epidemiologic
study, a single urine measurement of certain molecular features
may adequately represent their longer-term usual (i.e., at least

2 y) levels, which may serve as intermediate biomarkers linking
arsenic exposure and chronic diseases.

Consistent with our finding of reproducible molecular fea-
tures, a previous study investigated the source of variability of
539 metabolites measured by LC-MS and GC-MS in urine sam-
ples and found that a large proportion (81%) of the metabolites
had an ICC exceeding 0.50. However, the evaluation of reprodu-
cibility was based on 17 male subjects over 2 to 10 d. In our
study, reproducibility of molecular features were estimated in
urine samples collected 2 y apart and we found 27% molecular
features having an ICC over 0.50. The difference in time inter-
vals between sample collections may partially explain the
much higher portion of reproducible metabolites in the previ-
ous study as compared with that of our study. For many
metabolites, the correlation between samples would be
expected to be higher when time intervals between sample col-
lections are short. As a result, measures over a few days may
not capture the true temporal variability around the “usual”
long-term level of these metabolites. Therefore, our study
adds to the evidence that certain urinary metabolites may be
more relatively stable than others over a longer period of time
and have the potential to serve as long-term biomarkers asso-
ciated with exposures and/or diseases.

We identified several urinary metabolites that were dose-
dependently associated with either water arsenic or urinary ar-
senic, some of which may be of biological significance. For
instance, three amino acids (glycine, L-threonine, and serine) that
are involved in one-carbon metabolism—the central pathway that
facilitates arsenic methylation and elimination—were inversely
related to water or urinary arsenic levels. Glycine and serine par-
ticipate in the metabolism of methionine as a methyl-group
acceptor and as a substrate for cystathionine synthesis, respec-
tively (Benevenga and Harper 1970; Stead et al. 2000). Both ani-
mal and human studies (Benevenga and Harper 1970; Fukada
et al. 2006; Girard-Globa et al. 1972; Stead et al. 2000; Verhoef
et al. 2004) have shown that serine can lower homocysteine—a
risk factor for CVD. Glycine is synthesized endogenously from
serine, threonine, choline, or glyoxylate in the liver and kidney
(Wang et al. 2013). Glycine exerts anti-inflammatory and antioxi-
dative effects (McCarty and DiNicolantonio 2014; Senthilkumar
et al. 2004) and has been shown to reduce plasma insulin, fat
mass, and blood pressure in rodents (Alvarado-Vásquez et al.
2003; El Hafidi et al. 2004). Lower glycine concentrations have
been associated with several traditional cardiovascular risk

Figure 2. Adjusted means of normalized peak intensity of L-threonine by quartiles of baseline (A) total water arsenic levels and (B) total urinary arsenic levels.
Means were adjusted for sex, age, and cohort memberships.
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factors, including obesity (Oberbach et al. 2011; Tastesen et al.
2014; Zhao et al. 2016), hypertension (El Hafidi et al. 2006; El
Hafidi et al. 2004), and diabetes mellitus (De Luca et al. 2001;
Palmer et al. 2015; Wang-Sattler et al. 2012). Previous studies
also demonstrated that greater dietary intake of threonine was
associated with lower blood pressure in a cohort study of patients
with CVD (Tuttle et al. 2012) and circulating serine levels were
inversely associated with BMI in nonsmoking healthy women
(Zhao et al. 2016) and youth with obesity and type 2 diabetes
(Mihalik et al. 2012).

Two epidemiologic studies have investigated the impact of ar-
senic exposure from drinking water on metabolite profiles. A
recent study of 246 pregnant Chinese women identified nine uri-
nary metabolites that could be used to classify the women into a
low (the first tertile of urinary total creatinine-adjusted arsenic) or
high (the third tertile of urinary arsenic) exposure category using
UPLC/Q-TOF MS (ultra performance liquid chromatography
coupled to quadrupole with time-of-flight mass spectrometry) (Li
et al. 2017). The identified metabolites were potentially related to
endocrine disruption and oxidative stress. Another study of 86
Mexican individuals with exposure to low-to-moderate arsenic
levels in drinking water (0.1 to 285 lg=L) reported 61 altered
metabolites in urine associated with urinary total unadjusted
arsenic using GC- and LC-TOF-MS; these metabolites were
associated with amino acid metabolism, carbohydrate/energy
metabolism, and vitamin (riboflavin) metabolism (Martin et al.
2015). However, there was no overlap of the identified metab-
olites between these studies and our study. It should be noted
that we evaluated the exposure–metabolite associations only
for the metabolites that were relatively stable over time
(ICC≥0:60). Taken together, these data point to metabolic dis-
ruption by arsenic exposure, though specific metabolites
shared across all studies are difficult to identify because of dif-
ferences in exposure background, population characteristics,
and metabolomics platforms. Larger studies are needed to charac-
terize the interplay between arsenic exposure, metabolite profile,
and disease outcomes.

Strengths of this study include a sufficient number of subjects
for a metabolomics study to assess reproducibility, a wide range
of arsenic exposure levels, and the long interval between collec-
tions of repeated urine samples for evaluation of long-term repro-
ducibility. This study is among the first to evaluate the long-term
reproducibility of metabolomics data in human urine samples
from a prospective cohort study. We also acknowledge several
limitations. First, GC-MS data contain complexity such as that a
single metabolite can produce multiple fragments. It is suggested
that a simple strategy is to combine these fragments with the
same retention time into a single metabolite. We did not use this
strategy to identify metabolites from all the 2,519 molecular fea-
tures because our aim was to evaluate the existence of reproduci-
ble metabolomics data using urine samples that are readily
available from our large parent cohort study. Second, we identi-
fied only a small number of metabolites from the reproducible
molecular features that prevented us from further pathway analy-
sis. We therefore acknowledge that a complementary platform
such as LC-MS should be employed in future studies for compre-
hensive understanding of metabolic alterations in response to ar-
senic exposure.

In summary, our study identified urinary metabolites with
long-term reproducibility that were associated with arsenic expo-
sure using a global GC-MS metabolomics platform. The data
established the feasibility of using metabolomics platform in
future larger studies to assess alterations in urinary metabolites in
relation to arsenic exposure and their associations with the risk of
CVD or cancer.
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